Stimuli design for SSVEP-based brain computer-interface
نویسندگان
چکیده
منابع مشابه
Development of a Brain Computer Interface (BCI) Speller System Based on SSVEP Signals
BCI is one of the most intriguing technologies among other HCI systems, mostly because of its capability of recording brain activities. Spelling BCIs, which help paralyzed people to maintain communication, are one of the striking topics in the field of BCI. In this scientific a spelling BCI system with high transfer rate and accuracy that uses SSVEP signals is proposed.In addition, we suggested...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملMultiple Frequencies Sequential Coding for SSVEP-Based Brain-Computer Interface
BACKGROUND Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has become one of the most promising modalities for a practical noninvasive BCI system. Owing to both the limitation of refresh rate of liquid crystal display (LCD) or cathode ray tube (CRT) monitor, and the specific physiological response property that only a very small number of stimuli at certain fre...
متن کاملNew Paradigms for Brain Computer Interface Based on SSVEP
A Brain Computer Interface (BCI) creates a new communication channels for disabled peoples, the classical way of steady-state visual evoked potential (SSVEP) based on (BCI) was focusing on multi-frequency and phases. In this study a novel high-speed SSVEP based on BCI, was implemented a new paradigms of SSVEP, which induced by irregular flickering with phase-tagged toward brain activity respons...
متن کاملUsing Riemannian geometry for SSVEP-based Brain Computer Interface
Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electronics and Telecommunications
سال: 2016
ISSN: 2300-1933
DOI: 10.1515/eletel-2016-0014